ATTACHMENT C

The text that follows herein is the Final Report, entitled "Identifying Priority Amphibian and Reptile Conservation Areas in California: Pilot Implementation," by B. Todd and J. P. Rose, July 2012. The entire 114 pp. report can be viewed also at the following link:
https://dl.dropbox.com/u/4125587/California\ PARCA\ report\ no\%Apdx.pdf

Identifying Priority Amphibian and Reptile Conservation Areas in California: Pilot Implementation

Brian D. Todd, Ph.D. and
Jonathan P. Rose
University of California, Davis

with additional GIS support from Stacie Hooper and Kristi Fien California Department of Fish \& Game

July 2012

Report to California Department of Fish and Game
For Contract No. P0685904

Acknowledgments

Funding for this pilot implementation of PARCA criteria to the state of California was provided to the University of California, Davis via contract no. P0685904 with the California Department of Fish and Game, as a sub-recipient (U-26-R-1) of the US Fish \& Wildlife Service Competitive State Wildlife Grant Program's 2009 "Amphibian \& Reptile Conservation Need" award.

Contents

Background and Methods 1
Results 2
Criteria 2 and 3 3
Criteria 4 76
Criteria 5 79
Challenges to PARCA Implementation 99
Table 1 101
Table 2 109

Background and Methods

The purpose of this project was to preliminarily identify Priority Amphibian and Reptile Conservation Areas (PARCAs) using the suggested criteria set forth in Sutherland and deMaynadier (2012), developed in collaboration with Partners in Amphibian and Reptile Conservation. Our goal here was to focus on those species, subspecies, and designated populations recognized by the California Department of Fish and Game (CDFG) as Species of Special Concern, Species of Greatest Conservation Need, listed on the Special Animals list, or otherwise recognized as imperiled. In this project, we use expert-drawn range maps, known occurrences, and quantitative information on landscape viability to highlight first-pass areas that can serve to inform the identification and implementation of PARCAs in California. Our analysis should be viewed only as a pilot study; PARCA designation will require additional input and validation from experts in private, academic, and public sectors, including biologists with CDFG. Additionally, as discussed in the concluding sections of this document, full implementation of a PARCA system in California will require additional high-quality data and may also necessitate some deviation from the suggested PARCA implementation guidelines (see Sutherland and deMaynadier 2012 for criteria).

We used the same taxonomy recently used in the revision to California's list of Amphibian and Reptile Species of Special Concern (Table 1), which generally uses the phylogenetic species concept and recognizes distinct species, subspecies, and designated populations that may receive different regulatory or legal recognition and protection by state or federal agencies, statutes, or laws. To conduct our analyses, we obtained species' legal or regulatory statuses from CDFG and the US Fish and Wildlife Service and imperilment rankings from NatureServe and the International Union for Conservation of Nature (IUCN). We obtained expert-drawn range maps in the form of GIS shapefiles from the CDFG Biogeographic Data Branch. Each range map was created by CDFG personnel and collaborators using species occurrence data and known associations with wildlife habitat as part of the California Wildlife Habitat Relationships System (see http://www.dfg.ca.gov/biogeodata/cwhr/ for more information). When range maps were not available for newly described species, subspecies, or to reflect distinct populations with different regulatory status, we modified those maps obtained from CDFG or created new ones using occurrence data, published studies, and habitat/ecoregion relationships.

To incorporate landscape viability as described in the PARCA implementation guidelines (Sutherland and deMaynadier 2012), we used the natural landscapes land-use metric and associated GIS shapefiles developed by Theobald (2010). Briefly, the natural landscapes (NL) metric evaluates the degree of human modification of native natural land cover due to factors that include agriculture, urban development, residential land use, and roadways or road networks (see Theobald 2010 for more information). The NL data layer provides information at the resolution of a $270-\mathrm{m}$ cell. The NL metric is calculated by first quantifying the proportion of natural cover at seven scales using circular neighborhoods of $0.07,0.58,5.90,51.7,478,4,186$, and $38,972 \mathrm{~km}^{2}$. The NL value for each 270 m cell is then determined by finding the mean value across all scales (Theobold 2010). It is a
proportional value ranging from 0 to 1 . Although not entirely equivalent, a value of 0.5 can be roughly interpreted as representing a cell with 50% landscape viability that reflects the degree of intact natural landscape within the cell as well as in nearby cells. See Theobald 2010 for complete discussion.

For each taxon, we identify whether it meets PARCA Criteria 2 (federally listed or globally imperiled), Criteria 3 (state listed or state imperiled), or Criteria 4 (Species of Special Concern or Species of Greatest Conservation Need as identified by the state).

For PARCA Criteria 2 and 3, we provide a map for each taxon that meets these criteria. Each map outlines the species' distribution, shows historical and modern occurrences, and is overlaid on the natural landscape habitat layer. Occurrence data were obtained from published papers, the California Natural Diversity Database maintained by CDFG, and from HerpNet (http://www.herpnet.org/) and the Global Biodiversity Information Facility (http://www.gbif.org/).

For Criteria 4, we highlight and shade all areas where two or more Criteria 4 species overlap in distribution within the state. We have drawn potential PARCAs where modern occurrence data suggest that the species still currently overlap and presently occur, and where the landscape meets or exceeds the 50% landscape viability criteria outlined in Criteria 1.

For Criteria 5, we provide an overview of total herpetofaunal richness on an ecoregion basis. Species distributions were converted to rasters with a 1 km resolution. We have drawn a single potential PARCA where richness is greatest in each ecoregion, except in some regions where multiple areas have equivalent richness. Additionally, we ensured that each area selected for potential PARCA designation met or exceeded the 50% landscape viability criteria outlined in Criteria 1.

Results

Table 2 lists all amphibian and reptile species, subspecies, or designated populations that meet criteria to be considered for PARCA implementation. The table is sorted first according to the highest PARCA Criterion each taxon meets and then alphabetically by species binomen. It also includes forthcoming additions to the revised Amphibian and Reptile Species of Special Concern list, which will result in the addition of some species, subspecies, or designated populations to the CDFG Special Animals list. Table 2 also identifies the total areal distribution of each of the taxa on the list, as well as the amount of area required to meet strict implementation of Criteria 2-4.

Criteria 2 and 3

On the following 72 pages, we have created a map for each species, subspecies, or designated population that meets Criteria 2 or 3 (see Table 2 for list). Each map identifies the species in question, depicts the range of the species, and displays historical and modern occurrences for this species. These are overlaid on a natural landscape layer used to identify high quality, intact habitat versus that which has been converted or degraded. Challenges and potential obstacles to the strict implementation of PARCAs as described in Criteria 2 and 3 are discussed at the end of this document in the section titled Challenges to PARCA Implementation.

Natural Landscape Value
High : 1

Low : 0

Sonoma Tiger Salamander Ambystoma californiense "Sonoma"

- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\square Species range

Natural Landscape Value
High : 1

Low : 0

0	2	4	8	12	16

California Tiger Salamander Ambystoma californiense

- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)

\square Species range

0	40	80	160	240	320
					Kilometers

Natural Landscape Value
High : 1

Low : 0

Natural Landscape Value

0	1.5	3	6	9	12

Clouded Salamander Aneides ferreus

- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\square Species range

Natural Landscape Value
High : 1

Low : 0

California Legless Lizard Anniella pulchra

- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\square Species range

Coastal Tailed Frog Ascaphus truei

Natural Landscape Value High : 1

Low: 0

0	20	40	80	120	160

Orange-throated Whiptail Aspidoscelis hyperythra

- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\square Species range

Natural Landscape Value
High : 1

Low : 0

Inyo Mountains Salamander Batrachoseps campi

- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\square Species range

Natural Landscape Value

High : 1
Low : 0
High : 1
Low : 0

Kilometers

Hell Hollow Slender Salamander Batrachoseps diabolicus

- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\square Species range

0	12.5	25	50	75	100
	-				

San Gabriel Mountains Slender Salamander Batrachoseps gabrieli

- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\square Species range

0	5	10	20	30	40

Natural Landscape Value
High : 1

Low : 0

Gregarious Slender Salamander Batrachoseps gregarius

- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\square Species range

Natural Landscape Value High : 1

Low : 0

San Simeon Slender Salamander Batrachoseps incognitus

- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\square Species range

Natural Landscape Value

Sequoia Slender Salamander Batrachoseps kawia

- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)

\square Species range

$\begin{array}{lll}0 & 3.5 & 7\end{array}$
14
21
28
Kilometers

Natural Landscape Value
High : 1

Low: 0

Santa Lucia Mountains Slender Salamander Batrachoseps luciae

- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\square Species range

Natural Landscape Value High : 1

Low : 0

Desert Slender Salamander

 Batrachoseps major aridus- Historical Occurrences (> 20 years old)
\square Species range

Natural Landscape Value High : 1

Low : 0

Lesser Slender Salamander Batrachoseps minor

- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\square Species range

Natural Landscape Value High : 1

Low : 0

Channel Islands Slender Salamander Batrachoseps pacificus

- Modern occurrences (<20 years old)
- Historical occurrences(> 20 years old)

\square Species range

Natural Landscape Value
High : 1

Low: 0

Kings River Slender Salamander Batrachoseps regius

- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\square Species range

Natural Landscape Value High : 1

Low : 0

Relictual Slender Salamander Batrachoseps relictus

- Historical occurrences (> 20 years old)
\square Species range
- Modern occurrences (<20 years old)

```
```

- Modern occurrences (<20 years old)

```
```

- Modern occurrences (<20 years old)

```



Natural Landscape Value
High : 1

Low : 0

\section*{Kern Plateau Salamander Batrachoseps robustus}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)

\section*{Species range}

\(\begin{array}{llllll}0 & 5 & 10 & 20 & 30 & 40\end{array}\)
므른 Kilometers

\section*{Kern Canyon Slender Salamander Batrachoseps simatus}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


Natural Landscape Value
High : 1

Low: 0

\section*{Tehachapi Slender Salamander Batrachoseps stebbinsi}
- Historical occurrences (> 20 years old)
\(\square\) Species range


Natural Landscape Value High : 1

Low : 0

\section*{Arroyo Toad Bufo californicus}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


\section*{Natural Landscape Value}

High : 1


Low: 0

\section*{Yosemite Toad Bufo canorus}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range

Natural Landscape Value

Low : 0
\begin{tabular}{llllll}
0 & 12.5 & 25 & 50 & 75 & 100 \\
& & & & &
\end{tabular}

\section*{Black Toad Bufo exsul}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


Natural Landscape Value
High : 1

Low: 0

\section*{Southern Rubber Boa Charina bottae umbratica}
- Historical Occurrences (> 20 years old)
\(\square\) Species range


Value
High : 1

Low: 0


\section*{Barefoot Gecko Coleonyx switaki}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


High : 1

Low: 0

\section*{San Diego Banded Gecko Coleonyx variegatus abbotti}
- Modern occurrences (< 20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


Natural Landscape Value
High : 1

Low : 0

\section*{Red Diamond Rattlesnake Crotalus ruber}
O Modern occurrences (<20 years old)
O Historical occurrences (>20 years old)
\(\square\) Species range


Natural Landscape Value
Value
High : 1

Low : 0


\section*{California Giant Salamander Dicamptodon ensatus}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)

Species range


Natural Landscape Value
High: 1
Low : 0

\section*{Panamint Alligator Lizard Elgaria panamintina}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)


\section*{Western Pond Turtle Emys marmorata}
\(\square\)

High : 1

Low: 0
- Modern occurrences (< 20 years old)
- Historical occurrences (> 20 years old)

Species range


\section*{Yellow-blotched Ensatina} Ensatina eschscholtzii croceater
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range



Natural Landscape Value
High : 1

Low : 0

\section*{Large-blotched Ensatina Ensatina eschscholtzii klauberi}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


\section*{Blunt-nosed Leopard Lizard Gambelia sila}


\section*{Desert Tortoise Gopherus agassizii}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range

\(\begin{array}{llllll}0 & 30 & 60 & 120 & 180 & 240\end{array}\)

\section*{Banded Gila Monster Heloderma suspectum cinctum}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


\section*{Limestone Salamander Hydromantes brunus}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


Natural Landscape Value High : 1

Low: 0

\section*{Shasta Salamander Hydromantes shastae}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)

\(\square\) Species range

\begin{tabular}{llllll}
0 & 5 & 10 & 20 & 30 & 40 \\
& & & & & \\
\hline
\end{tabular}

Natural Landscape Value

High : 1

Low: 0



\section*{Alameda Striped Racer Masticophis lateralis euryxanthus}
```

- Modern occurrences (< 20 years old)
 - Historical occurrences (> 20 years old)
\square
Species range

```


Natural Landscape Value Value
High : 1
Low : 0
\(\begin{array}{llllll}0 & 5 & 10 & 20 & 30 & 40\end{array}\)


\section*{Coast Horned Lizard Phrynosoma blainvilli}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


Natural Landscape Value
High : 1

Low : 0

\section*{Flat-tailed Horned Lizard Phrynosoma mcalli}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


\section*{Santa Cruz Island Gopher Snake Pituophis catenifer pumilis}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


Natural Landscape Value
Value
High : 1

Low : 0

\section*{Coronado Skink} Plestiodon skiltonianus interparietalis
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


Natural Landscape Value
High : 1

Low : 0
\begin{tabular}{llllll}
0 & 20 & 40 & 80 & 120 & 160 \\
\(\square\) & & & & & \\
\hline
\end{tabular}

\section*{Scott Bar Salamander Plethodon asupak}



Kilometers

Natural Landscape Value High : 1 Low: 0

Siskiyou Mountains Salamander Plethodon stormi
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)


Natural Landscape Value


Low: 0

\section*{Northern Red-legged Frog Rana aurora}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range



Natural Landscape Value High : 1

Low: 0

\title{
Foothill Yellow-legged Frog Rana boylii
}


Natural Landscape Value
High : 1

Low: 0
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)

\begin{tabular}{lllllll}
0 & 62.5 & 125 & 250 & 375 & 500 \\
& & & & & &
\end{tabular}

\section*{Cascades Frog Rana cascadae}
- Modern occurrences (< 20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range



Natural Landscape Value
High : 1

Low : 0

\section*{California Red-legged Frog Rana draytonii}



\section*{Oregon Spotted Frog Rana pretiosa}
- Historical occurrences (> 20 years old)
\(\square\) Species range


Natural Landscape Value
High : 1

Low: 0


Sierra Nevada Yellow-legged Frog Rana sierrae
- Modern occurrences (< 20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


\section*{Southern Torrent Salamander Rhyacotriton variegatus}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)


\section*{Coast Patch-Nosed Snake Salvadora hexalepis virgultea}
- Modern occurrences (< 20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


\section*{Couch's Spadefoot \\ Scaphiopus couchii}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


Natural Landscape Value High : 1

Low: 0

\footnotetext{
012.525

50
75
100
}

\section*{Western Spadefoot Spea hammondii}
\(\square\)

High : 1

Low: 0
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)

Species range
\begin{tabular}{lllllll}
0 & 50 & 100 & 200 & 300 & 400 \\
& & & & & &
\end{tabular}

\section*{Giant Gartersnake Thamnophis gigas}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)


\section*{Two-Striped Gartersnake Thamnophis hammondii}

O Modern occurrences (<20 years old)
- Historical occurrences (>20 years old)
\(\square\) Species range


\section*{South Coast Gartersnake Thamnophis sirtalis sp.}
```

O Modern occurrences (< 20 years old)

- Historical occurrences (>20 years old)
\square Species range

```



Natural Landscape Value Value

High : 1

Low : 0


\section*{Coachella Valley Fringe-toed Lizard Uma inornata}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range

\begin{tabular}{llllll}
0 & 5 & 10 & 20 & 30 & 40 \\
\(\square\) & \(\square\) & & & \\
\hline & & &
\end{tabular}

Natural Landscape Value High : 1

Low : 0

\section*{Colorado Desert Fringe-toed Lizard Uma notata}
- Modern occurrences (< 20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


Kilometers

Natural Landscape Value High : 1

Low : 0

\section*{Mojave Fringe-toed Lizard Uma scoparia}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


Natural Landscape Value High: 1

Low : 0

\section*{Sandstone Night Lizard Xantusia gracilis}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)

\(\square\) Species range


Natural Landscape Value High : 1

Low : 0

\section*{Island Night Lizard Xantusia riversiana}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


\section*{0}

\(0510 \quad 20 \quad 30 \quad 40\)
■】 K Kilometers

\section*{Sierra Night Lizard Xantusia vigilis sierrae}
- Modern occurrences (<20 years old)
- Historical occurrences (> 20 years old)
\(\square\) Species range


\section*{Criteria 4}

On the following two pages, we identify all areas in California where two or more of the state's Species of Special Concern overlap. We identify potential candidate PARCAS that are supported by recent occurrences ( \(<10\) years) for each species. These areas and potential candidate PARCAs are overlaid on two different maps to demonstrate the underlying landscape viability (PARCA Criteria 1) as discussed previously. Challenges and potential obstacles to the strict implementation of PARCAs as described in Criteria 4 are discussed at the end of this document in the section titled Challenges to PARCA Implementation.


> Criteria 4: State Vulnerable Species or Species of High Regional Responsibility


\section*{Criteria 5}

The figures on the following pages demonstrate pilot implementation of PARCA Criteria 5, which prioritizes the designation of PARCAs in areas of high species richness for each ecoregion. Each map features a given ecoregion and displays total species richness for all reptiles and amphibians in that ecoregion. The potential candidate PARCAs drawn on each map identify the single area where total species richness is greatest and where landscape viability surpasses the 50\% natural landscape threshold required to meet Criteria 1. Where multiple areas had similar species richness and landscape viability, we outlined more than one possible candidate PARCA. Challenges and potential obstacles to the strict implementation of PARCAs as described in Criteria 5 are discussed at the end of this document in the section titled Challenges to PARCA Implementation.




Northern California Coast Ecoregion 263A


Species richness




Species richness







Northern California Coast Ranges Ecoregion M261B


Northern California Interior Coast Ranges Ecoregion M261C

\author{
Species richness \\ High : 30
Low : 15
\(\square\) Candidate PARCA
}







Southern California Mountains and Valleys
Ecoregion M262B


Species richness
High : 45
Low : 24
\(\square\) Candidate PARCA


\section*{Challenges to PARCA Implementation}

We have identified several challenges or obstacles to the identification of PARCAs in California if the criteria set forth in the PARCA implementation guidelines are to be strictly adhered to. Foremost, there is a pressing need for modern occurrence data. The designation of PARCAs places a premium on knowing not just the distribution of species in the state, but also the very recent distribution and status of these species. In California, despite having widespread occurrence data on many species across the state, there are too few records less than 10 years old or less than 20 years old for most species. To effectively identify the presence of species and establish important PARCAs, better, more recent, and more widespread occurrence data are needed.

A second challenge related to occurrence data is knowing which species truly occur in given ecoregions. More specifically, the distribution of many species is such that they are often restricted to some ecoregions for climate or environmental reasons. However, errors or imprecision in georeferenced occurrences, expert opinion, and some actual occurrences occasionally identify species as crossing ecoregional boundaries to occur just barely in adjacent ecoregions. It is difficult to know the degree to which those species marginally occurring in an ecoregion should reflect total species richness and whether those species actually do occur in a given ecoregion. This will affect the total count of species for each ecoregion and thus affects whether areas meet the minimum proportional thresholds for total richness in an ecoregion required to meet Criteria 5.

In addition to some uncertainty about total species richness for each ecoregion, it is often the case that the minimum proportional thresholds for total richness in an ecoregion required to meet Criteria 5 are in fact not met. In fact, in California, for most ecoregions, there are simply no areas where at least \(75 \%\) of the total herpetofaunal species in an ecoregion or \(90 \%\) of either amphibian or reptiles in an ecoregion all occur with overlapping distributions. A critical and unintended consequence of having to meet these thresholds for PARCA designation is that ecoregions of high species richness often have no areas that meet these thresholds whereas ecoregions of low species richness often have many areas that meet these thresholds. The result is a perverse scenario in which Criteria 5 contributes to the establishment of "richness PARCAs" only in ecoregions that are relatively depauperate of species whereas those ecoregions of high richness are left with no "richness PARCAs". A better alternative would be to designate PARCAs in each ecoregion that do represent the highest species richness in that ecoregion. We have taken such an approach in our maps for Criteria 5 and this could also be extended to include 3 areas that each meet highest total richness, highest reptile richness, and highest amphibian richness.

There is yet one more obstacle to the implementation of Criteria 5 for PARCA designation. Many of California's ecoregions extend beyond the borders of the state. However, Criteria 5 requires that PARCAs only be designated for areas that are among the three most speciose for each ecoregion. This is difficult to implement on a state-wide basis. At a minimum, a better alternative would be to allow each state to identify the three areas
in an ecoregion based on counts from within only their state, thus ignoring those species and areas that occur in an ecoregion outside the state's borders.

There are some additional challenges to the implementation of Criteria 2, 3, and 4. Notably, the size requirements are often onerous and would result in PARCAs that are excessively large and well beyond the scope of any current conservation management. Requiring at least 10,20 , or \(30 \%\) of a species' range means that for wide-ranging species, areas as large as thousands of square kilometers would need to be designated as a PARCA (Table 2). This is simply not tenable. The alternative to these size requirements is to identify those areas that support the most important populations for each species. This is more achievable but will require the input of scientific experts with demonstrated knowledge of these species, their status, and their distributions.

A final challenge to the implementation of any PARCA is the need to meet Criteria 1 standards for landscape viability. Theobold's (2010) natural landscapes GIS layer is a reasonable and useful proxy for landscape viability. Using this tool, however, it becomes apparent that there are some highly imperiled taxa that meet Criteria 2 and 3 but which do not occur in areas that meet the landscape viability requirements for the minimum size requirement of 1,500 acres. For these species, there would simply be no opportunity to designate a PARCA.

\section*{References}

Sutherland R, deMaynadier P. 2012. Model Criteria and Implementation Guidance for a Priority Amphibian and Reptile Conservation Area (PARCA) System in the USA. Partners in Amphibian and Reptile Conservation, Technical Publication PARCA-1. 28 pp.

Theobold DM. 2010. Estimating natural landscape changes from 1992 to 2030 in the conterminous US. Landscape Ecology 25(7):999-1011.

Taxon

\section*{CAUDATA}

AMBYSTOMATIDAE
Ambystoma californiense
Ambystoma californiense "Santa Barbara"
Ambystoma californiense "Sonoma"
Ambystoma gracile
Ambystoma macrodactylum croceum
Ambystoma macrodactylum sigillatum

\section*{DICAMPTODONTIDAE}

Dicamptodon ensatus
Dicamptodon tenebrosus

\section*{PLETHODONTIDAE}

Aneides ferreus
Aneides flavipunctatus
Aneides flavipunctatus niger
Aneides flavipunctatus "shasta"
Aneides lugubris
Aneides vagrans
Batrachoseps altasierrae
Batrachoseps attenuatus
Batrachoseps bramei
Batrachoseps campi
Batrachoseps diabolicus
Batrachoseps gabrieli
Batrachoseps gavilanensis
Batrachoseps gregarius
Batrachoseps incognitus
Batrachoseps kawia
Batrachoseps luciae
Batrachoseps major aridus
Batrachoseps major major
Batrachoseps minor
Batrachoseps nigriventris

California Tiger Salamander
Santa Barbara Tiger Salamander
Sonoma Tiger Salamander
Northwestern Salamander
Santa Cruz Long-toed Salamander
Southern Long-Toed Salamander

California Giant Salamander
Pacific Giant Salamander

Clouded Salamander
Black Salamander
Santa Cruz Black Salamander
Shasta Black Salamander
Arboreal Salamander
Wandering Salamander
Greenhorn Mtns Slender Salamander
California Slender Salamander
Fairview Slender Salamander
Inyo Mountains Salamander
Hell Hollow Slender Salamander
San Gabriel Mtns Slender Salamander
Gabilan Mtns Slender Salamander
Gregarius Slender Salamander
San Simeon Slender Salamander
Sequoia Slender Salamander
Santa Lucia Mtns Slender Salamander
Desert Slender Salamander
Garden Slender Salamander
Lesser Slender Salamander
Black-bellied Slender Salamander
\begin{tabular}{ll} 
Batrachoseps pacificus & Channel Islands Slender Salamander \\
Batrachoseps regius & Kings River Slender Salamander \\
Batrachoseps relictus & Relictual Slender Salamander \\
Batrachoseps robustus & Kern Plateau Salamander \\
Batrachoseps simatus & Kern Canyon Slender Salamander \\
Batrachoseps stebbinsi & Tehachapi Slender Salamander \\
& \\
Ensatina eschscholtzii croceater & Yellow-Blotched Ensatina \\
Ensatina eschscholtzii eschscholtzii & Monterey Ensatina \\
Ensatina eschscholtzii klauberi & Large-Blotched Ensatina \\
Ensatina eschscholtzii oregonensis & Oregon Ensatina \\
Ensatina eschscholtzii picta & Painted Ensatina \\
Ensatina eschscholtzii platensis & Sierra Nevada Ensatina \\
Ensatina eschscholtzii xanthoptica & Yellow-eyed Ensatina \\
& \\
Hydromantes brunus & Limestone Salamander \\
Hydromantes platycephalus & Mount Lyell Salamander \\
Hydromantes shastae & Shasta Salamander \\
& \\
Plethodon asupak & Scott River Salamander \\
Plethodon dunni & Dunn's Salamander \\
Plethodon elongatus & Del Norte Salamander \\
Plethodon stormi & Siskiyou Mountains Salamander \\
RHYACOTRITONIDAE & \\
Rhyacotriton variegatus & Southern Torrent Salamander \\
SALAMANDRIDAE & \\
Taricha granulosa & Rough-skinned Newt \\
Taricha rivularis & Red-bellied Newt \\
Taricha sierrae & Sierra Newt \\
Taricha torosa & Coast Range Newt
\end{tabular}

Batrachoseps pacificus
Batrachoseps regius
Batrachoseps relictus
Batrachoseps robustus
Batrachoseps simatus
Batrachoseps stebbinsi

Ensatina eschscholtzii croceater
Ensatina eschscholtzii eschscholtzii
Ensatina eschscholtzii klauberi
Ensatina eschscholtzii oregonensis
Ensatina eschscholtzii picta
Ensatina eschscholtzii platensis
Ensatina eschscholtzii xanthoptica
Hydromantes brunus
Hydromantes platycephalus
Hydromantes shastae

Plethodon asupak
Plethodon dunni
Plethodon elongatus
Plethodon stormi

RHYACOTRITONIDAE
Rhyacotriton variegatus

SALAMANDRIDAE
Taricha granulosa
Taricha rivularis
Taricha sierrae
Taricha torosa

\section*{ANURA}

\section*{ASCAPHIDAE}

Ascaphus truei

\section*{BUFONIDAE}

Bufo alvarius
Bufo boreas boreas
Bufo boreas halophilus
Bufo californicus

Channel Islands Slender Salamander
Kings River Slender Salamander
Relictual Slender Salamander
Kern Plateau Salamander
Kern Canyon Slender Salamander
Tehachapi Slender Salamander

Yellow-Blotched Ensatina
Monterey Ensatina
Large-Blotched Ensatina
Oregon Ensatina
Painted Ensatina
Sierra Nevada Ensatina
Yellow-eyed Ensatina

Limestone Salamander
Mount Lyell Salamander
Shasta Salamander

Scott River Salamander
Dunn's Salamander
Del Norte Salamander
Siskiyou Mountains Salamander

Southern Torrent Salamander

Rough-skinned Newt
Red-bellied Newt
Coast Range Newt

Coastal Tailed Frog

Sonoran Desert Toad
Western Toad
California Western Toad
Arroyo Toad

Bufo canorus
Bufo cognatus
Bufo exsul
Bufo punctatus
Bufo woodhousii

\section*{HYLIDAE}

Pseudacris cadaverina
Pseudacris regilla

\section*{RANIDAE}

Rana aurora
Rana boylii
Rana cascadae
Rana draytonii
Rana muscosa
Rana pipiens
Rana pretiosa
Rana sierrae
Rana yavapaiensis

\section*{SCAPHIOPODIDAE}

Scaphiopus couchii

Spea hammondii
Spea intermontana

\section*{TESTUDINES}

\section*{EMYDIDAE}

Emys marmorata marmorata
Emys marmorata pallida
KINOSTERNIDAE
Kinosternon sonoriense

\section*{TESTUDINIDAE}

Gopherus agassizii

\section*{SQUAMATA - LIZARDS}

\section*{ANGUIDAE}

Elgaria coerulea coerulea

Yosemite Toad
Great Plains Toad
Black Toad
Red-spotted Toad
Woodhouse's Toad

California Treefrog
Pacific Treefrog

Northern Red-legged Frog
Foothill Yellow-legged Frog
Cascades Frog
California Red-legged Frog
Southern Mountain Yellow-legged Frog
Northern Leopard Frog
Oregon Spotted Frog
Sierra Nevada Yellow-legged Frog
Lowland Leopard Frog

Couch's Spadefoot

Western Spadefoot
Great Basin Spadefoot

Northern Pacific Pond Turtle
Southern Pacific Pond Turtle

Sonoran Mud Turtle

Desert Tortoise

Elgaria coerulea palmeri
Elgaria coerulea shastensis
Elgaria coerulea principis
Elgaria multicarinata multicarinata
Elgaria multicarinata scincicauda
Elgaria multicarinata webbii
Elgaria panamintina
ANNIELLIDAE
Anniella pulchra pulchra
Anniella pulchra nigra
CROTOPHYTIDAE
Crotaphytus bicinctores
Crotaphytus vestigium
Gambelia copeii
Gambelia sila
Gambelia wislizenii

\section*{GEKKONIDAE}

Coleonyx switaki
Coleonyx variegatus abbotti
Coleonyx variegatus variegatus

Phyllodactylus nocticolus

\section*{HELODERMATIDAE}

Heloderma suspectum cinctum

\section*{IGUANIDAE}

Dipsosaurus dorsalis
Sauromalus ater

\section*{PHRYNOSOMATIDAE}

Callisaurus draconoides
Petrosaurus mearnsi

Phrynosoma blainvillii
Phrynosoma douglassi
Phrynosoma mcallii

Sierra Nevada Alligator Lizard
Shasta Alligator Lizard
Northwestern Alligator Lizard
California Alligator Lizard Oregon Alligator Lizard
San Diego Alligator Lizard
Panamint Alligator Lizard

Silvery Legless Lizard
Black Legless Lizard

Great Basin Collared Lizard
Baja California Collared Lizard

Cope's Leopard Lizard
Blunt-nosed Leopard Lizard
Long-nosed Leopard Lizard

Barefoot Gecko
San Diego Banded Gecko
Desert Banded Gecko

Leaf-toed Gecko

Banded Gila Monster

Desert Iguana
Chuckwalla

Zebra-tailed Lizard

Banded Rock Lizard

Coast Horned Lizard
Pigmy Short-horned Lizard
Flat-tailed Horned Lizard

Phrynosoma platyrhinos calidiarum
Phrynosoma platyrhinos platyrhinos
Sceloporus graciosus gracilis
Sceloporus graciosus graciosus
Sceloporus graciosus vandenburgianus
Sceloporus magister uniformis
Sceloporus magister transversus
Sceloporus occidentalis becki
Sceloporus occidentalis biseriatus
Sceloporus occidentalis bocourtii
Sceloporus occidentalis longipes
Sceloporus occidentalis occidentalis
Sceloporus occidentalis taylori
Sceloporus orcutti
Uma inornata
Uma notata
Uma scoparia

Urosaurus graciosus
Urosaurus nigricaudus
Urosaurus ornatus

Uta stansburiana elegans
Uta stansburiana nevadensis
Uta stansburiana stansburiana

\section*{SCINCIDAE}

Plestiodon gilberti
Plestiodon skiltonianus skiltonianus
Plestiodon skiltonianus interparietalis

\section*{TEIIDAE}

Aspidoscelis hyperythra
Aspidoscelis tigris munda
Aspidoscelis tigris stejnegeri
Aspidoscelis tigris tigris

\section*{XANTUSIIDAE}

Xantusia gracilis
Xantusia henshawi
Xantusia riversiana

Southern Desert Horned Lizard Northern Desert Horned Lizard

Western Sagebrush Lizard
Northern Sagebrush Lizard
Southern Sagebrush Lizard
Yellow-backed Desert Spiny Lizard
Barred Desert Spiny Lizard
Island Fence Lizard
San Joaquin Fence Lizard
Coast Range Fence Lizard
Great Basin Fence Lizard
Northwestern Fence Lizard
Sierra Fence Lizard
Granite Spiny Lizard
Coachella Valley Fringe-toed Lizard
Colorado Desert Fringe-toed Lizard Mojave Fringe-toed Lizard

Long-tailed Brush Lizard
Baja California Brush Lizard
Ornate Tree Lizard

Western Common Side-blotched Lizard
Nevada Common Side-blotched Lizard
Northern Common Side-blotched Lizard

Gilbert's Skink
Western Skink
Coronado Skink

Orange-throated Whiptail
California Whiptail
Coastal Whiptail
Great Basin Whiptail

\author{
Sandstone Night Lizard Henshaw's Night Lizard Island Night Lizard
}

Xantusia vigilis sierrae
Xantusia vigilis vigilis
Xantusia wigginsi
Xantusia sp. "Yucca Valley"
Xantusia sp. "San Jacinto"

\section*{SQUAMATA - SNAKES}

\section*{BOIDAE}

Charina bottae bottae
Charina bottae umbratica

\section*{Lichanura orcutti}

\section*{COLUBRIDAE}

Arizona elegans candida
Arizona elegans eburnata
Arizona elegans occidentalis
Bogertophis rosaliae
Chionactis occipitalis annulata
Chionactis occipitalis occipitalis
Chionactis occipitalis talpina
Coluber constrictor mormon

\section*{Contia longicaudae}

Contia tenuis
Diadophis punctatus "Coastal CA"
Diadophis punctatus "Eastern CA"
Diadophis punctatus "Southern CA"
Diadophis punctatus "Great Basin"
Diadophis punctatus regalis
Hypsiglena chlorophaea
Hypsiglena ochrorhyncha klauberi
Hypsiglena ochrorhyncha nuchulata
Lampropeltis californiae
Lampropeltis zonata "Coastal Clade"

Sierra Night Lizard
Desert Night Lizard Baja California Night Lizard Yucca Valley Night Lizard
San Jacinto Night Lizard

Rubber Boa
Southern Rubber Boa
California Rosy Boa

Mojave Glossy Snake
Desert Glossy Snake
California Glossy Snake
Baja California Rat Snake
Colorado Shovel-nosed Snake
Mojave Shovel-nosed Snake
Nevada Shovel-nosed Snake
Western Yellow-bellied Racer
Forest Sharp-tailed Snake
Common Sharp-tailed Snake
Ring-necked Snake
Ring-necked Snake
Ring-necked Snake
Ring-necked Snake
Ring-necked Snake
Northern Desert Night Snake
San Diego Night Snake
California Night Snake
Common Kingsnake
California Mountain Kingsnake

Lampropeltis zonata "Northeastern Clade"
Lampropeltis zonata "Southern Clade"
Masticophis flagellum piceus
Masticophis flagellum ruddocki
Masticophis fuliginosus
Masticophus lateralis euryxanthus
Masticophus lateralis lateralis
Masticophis taeniatus

Phyllorhynchus decurtatus

Pituophis catenifer affinis
Pituophis catenifer annectens
Pituophis catenifer catenifer
Pituophis catenifer deserticola
Pituophis catenifer pumilis
Rhinocheilus lecontei

Salvadora hexalepis hexalepis
Salvadora hexalepis mojavensis
Salvadora hexalepis virgultea

Sonora semiannulata

Tantilla hobartsmithi
Tantilla planiceps

Thamnophis atratus atratus
Thamnophis atratus hydrophilus
Thamnophis atratus zaxanthus
Thamnophis couchii
Thamnophis elegans elegans
Thamnophis elegans terrestris
Thamnophis elegans vagrans
Thamnophis gigas
Thamnophis hammondii
Thamnophis marcianus
Thamnophis ordinoides
Thamnophis sirtalis fitchi
Thamnophis sirtalis infernalis
Thamnophis sirtalis tetrataenia

California Mountain Kingsnake
California Mountain Kingsnake
Red Coachwhip
San Joaquin Coachwhip
Baja California Coachwhip
Alameda Striped Racer
California Striped Racer
Striped Whipsnake
Spotted Leaf-nosed Snake

Sonoran Gopher Snake
San Diego Gopher Snake
Pacific Gopher Snake
Great Basin Gopher Snake
Santa Cruz Island Gopher Snake
Long-nosed Snake

Desert Patch-nosed Snake
Mojave Patch-nosed Snake
Coast Patch-nosed Snake

Western Ground Snake

Southwestern Black-headed Snake California Black-headed Snake

Santa Cruz Aquatic Garter Snake
Oregon Aquatic Garter Snake
Diable Range Aquatic Garter Snake
Sierra (Western Aquatic) Garter Snake
Mountain Terrestrial Garter Snake
Coast Terrestrial Garter Snake
Wandering Terrestrial Garter Snake
Giant Garter Snake
Two-striped Garter Snake
Checkered Garter Snake
Northwestern Garter Snake
Valley Garter Snake
California Red-sided Garter Snake
San Francisco Gartersnake

Thamnophis sirtalis sp.

Trimorphodon lambda
Trimorphodon lyrophanes

\section*{LEPTOTYPHLOPIDAE}

Leptotyphlops humilis humilis
Leptotyphlops humilis cahuilae

\section*{VIPERIDAE}

Crotalus atrox
Crotalus cerastes cerastes
Crotalus cerastes laterorepens
Crotalus mitchellii
Crotalus oreganus helleri
Crotalus oreganus lutosus
Crotalus oreganus oreganus
Crotalus ruber
Crotalus scutulatus
Crotalus stephensi

South Coast Garter Snake

Sonoran Lyre Snake
Peninsular Lyre Snake

Southwestern Blind Snake
Desert Blindsnake

Western Diamond-backed Rattlesnake
Mojave Desert Sidewinder
Colorado Desert Sidewinder
Speckled Rattlesnake
Southern Pacific Rattlesnake
Great Basin Rattlesnake
Northern Pacific Rattlesnake
Red Diamond Rattlesnake
Northern Mojave Rattlesnake
Panamint Rattlesnake

Table 2
\begin{tabular}{llccc}
\hline Taxon & \begin{tabular}{c} 
Highest Relevant \\
Ranking Status
\end{tabular} & \begin{tabular}{c} 
PARCA \\
Criteria
\end{tabular} & \begin{tabular}{c} 
Total Area of \\
Distribution
\end{tabular} & \begin{tabular}{c} 
Required Size of \\
PARCA designation
\end{tabular} \\
\hline Ambystoma californiense & Threatened - USFWS & 2 & 60,792 & 6,079 \\
Ambystoma californiense "Santa Barbara" & Endangered - USFWS & 2 & 755 & 76 \\
Ambystoma californiense "Sonoma" & Endangered - USFWS & 2 & 223 & 22 \\
Ambystoma macrodactylum croceum & Endangered - USFWS & 2 & 103 & 10 \\
Aneides ferreus & NatureServe-G3 & 2 & 4,381 & 438 \\
Anniella pulchra & NatureServe-G3G4 & 2 & 121,664 & 12,166 \\
Batrachoseps campi & IUCN - Endangered & 2 & 578 & 58 \\
Batrachoseps diabolicus & NatureServe-G2 & 2 & 5,548 & 555 \\
Batrachoseps gabrieli & NatureServe-G2 & 2 & 1,510 & 151 \\
Batrachoseps gregarius & NatureServe-G2G3 & 2 & 8,720 & 872 \\
Batrachoseps incognitus & NatureServe-G2G3 & 2 & 726 & 73 \\
Batrachoseps kawia & NatureServe-G1G2 & 2 & 754 & 75 \\
Batrachoseps luciae & NatureServe-G2G3 & 2 & 5,134 & 513 \\
Batrachoseps major aridus & Endangered - USFWS & 2 & 96 & 10 \\
Batrachoseps minor & NatureServe-G1G2 & 2 & 146 & 15 \\
Batrachoseps regius & NatureServe-G1 & 2 & 6,325 & 632 \\
Batrachoseps relictus & NatureServe-G2 & 2 & 492 & 49 \\
Batrachoseps robustus & NatureServe-G2 & 2 & 296 \\
Batrachoseps simatus & NatureServe-G2 & 2 & 773 & 77 \\
Batrachoseps stebbinsi & USFWS - Candidate & 2 & 1,329 & 133 \\
Bufo californicus & 2 & 31,750 & 3,175 \\
Bufo canorus & USFWS-Endangered & 2 & 832 \\
Bufo exsul & 2 & 3,320 & 309 & 216 \\
Charina bottae umbratica & USFWS-Candidate & 2 & 1,137 \\
Dicamptodon ensatus & NatureServe-G1Q & 2,159 & 1,085 \\
Elgaria panamintina & NatureServe-G2G3 & 2 & 10,870 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Emys marmorata & NatureServe-G3G4 & 2 & 265,202 & 26,520 \\
\hline Gambelia sila & USFWS-Endangered & 2 & 12,540 & 1,254 \\
\hline Gopherus agassizii & USFWS-Threatened & 2 & 85,916 & 8,592 \\
\hline Hydromantes brunus & NatureServe-G1 & 2 & 381 & 38 \\
\hline Hydromantes shastae & NatureServe-G1G2 & 2 & 1,583 & 158 \\
\hline Masticophus lateralis euryxanthus & USFWS-Threatened & 2 & 3,025 & 303 \\
\hline Phrynosoma blainvilli & NatureServe-G3G4 & 2 & 113,424 & 11,342 \\
\hline Phrynosoma mcallii & NatureServe-G3 & 2 & 8,276 & 828 \\
\hline Plethodon asupak & NatureServe-G1G2 & 2 & 525 & 52 \\
\hline Plethodon stormi & IUCN - Endangered & 2 & 323 & 32 \\
\hline Rana boylii & NatureServe-G3 & 2 & 120,389 & 12,039 \\
\hline Rana cascadae & NatureServe-G3G4 & 2 & 7,963 & 796 \\
\hline Rana draytonii & USFWS-Threatened & 2 & 133,206 & 13,321 \\
\hline Rana muscosa & USFWS-Endangered & 2 & 13,364 & 1,336 \\
\hline Rana pretiosa & USFWS-Candidate & 2 & 2,509 & 251 \\
\hline Rana sierrae & USFWS-Candidate & 2 & 27,093 & 2,709 \\
\hline Rhyacotriton variegatus & NatureServe- G3G4 & 2 & 18,487 & 1,849 \\
\hline Spea hammondii & NatureServe-G3 & 2 & 101,157 & 10,116 \\
\hline Thamnophis gigas & USFWS-Threatened & 2 & 24,961 & 2,496 \\
\hline Thamnophis sirtalis tetrataenia & USFWS-Endangered & 2 & 1,231 & 123 \\
\hline Uma inornata & USFWS-Threatened & 2 & 1,606 & 161 \\
\hline Uma notata & NatureServe-G3 & 2 & 9,160 & 916 \\
\hline Uma scoparia & NatureServe-G3G4 & 2 & 34,471 & 3,447 \\
\hline Xantusia gracilis & NatureServe-G1 & 2 & 28 & 3 \\
\hline Xantusia riversiana & NatureServe-G1 & 2 & 207 & 21 \\
\hline Ascaphus truei & NatureServe-S2S3 & 3 & 39,464 & 7,893 \\
\hline Aspidoscelis hyperythra & NatureServe-S2 & 3 & 11,030 & 2,206 \\
\hline Aspidoscelis tigris stejnegeri & NatureServe-S2S3 & 3 & 25,648 & 5,130 \\
\hline Batrachoseps pacificus & NatureServe-S2 & 3 & 507 & 101 \\
\hline Coleonyx switaki & NatureServe-S1 & 3 & 1,646 & 329 \\
\hline Coleonyx variegatus abbotti & NatureServe-S2S3 & 3 & 5,712 & 1,142 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Crotalus ruber & NatureServe-S2 & 3 & 22,751 & 4,550 \\
\hline Diadophis punctatus "Southern CA" & NatureServe-S2 & 3 & 18,510 & 3,702 \\
\hline Ensatina eschscholtzii croceater & NatureServe- S2S3 & 3 & 5,489 & 1,098 \\
\hline Ensatina eschscholtzii klauberi & NatureServe- S2S3 & 3 & 7,840 & 1,568 \\
\hline Heloderma suspectum cinctum & NatureServe-S1 & 3 & 7,698 & 1,540 \\
\hline Lampropeltis zonata "Southern" Clade & NatureServe-S1S2 & 3 & 6,764 & 1,353 \\
\hline Masticophis flagellum ruddocki & NatureServe-S2 & 3 & 50,419 & 10,084 \\
\hline Pituophis catenifer pumilis & NatureServe-S1 & 3 & 465 & 93 \\
\hline Plestiodon skiltonianus interparietalis & NatureServe-S1S2 & 3 & 16,123 & 3,225 \\
\hline Rana aurora & NatureServe-S2 & 3 & 8,529 & 1,706 \\
\hline Salvadora hexalepis virgultea & NatureServe-S2S3 & 3 & 33,679 & 6,736 \\
\hline Scaphiopus couchii & NatureServe-S2S3 & 3 & 8,596 & 1,719 \\
\hline Thamnophis hammondii & NatureServe-S2 & 3 & 63,970 & 12,794 \\
\hline Thamnophis sirtalis "South Coast" & NatureServe-S1S2 & 3 & 22,154 & 4,431 \\
\hline Xantusia vigilis sierrae & NatureServe-S1 & 3 & 936 & 187 \\
\hline Ambystoma macrodactylum sigillatum & CDFG-SSC & 4 & 19,484 & 5,845 \\
\hline Aneides flavipunctatus niger & CDFG-SSC & 4 & 2,170 & 651 \\
\hline Arizona elegans occidentalis & CDFG-SSC & 4 & 50,754 & 15,226 \\
\hline Bufo alvarius & CDFG-SSC & 4 & 475 & 142 \\
\hline Diadophis punctatus "Great Basin" & CDFG-SSC & 4 & 2,956 & 887 \\
\hline Gambelia copeii & CDFG-SSC & 4 & 192 & 58 \\
\hline Hydromantes platycephalus & CDFG-Special Animal & 4 & 15,316 & 4,595 \\
\hline Kinosternon sonoriense & CDFG-SSC & 4 & 214 & 64 \\
\hline Lichanura orcutti & CDFG-Special Animal & 4 & 97,142 & 29,143 \\
\hline Masticophis fuliginosus & CDFG-SSC & 4 & 1,021 & 306 \\
\hline Plethodon elongatus & CDFG-Special Animal & 4 & 8,326 & 2,498 \\
\hline Sceloporus graciosus graciosus & CDFG-Special Animal & 4 & 30,900 & 9,270 \\
\hline Taricha rivularis & CDFG-SSC & 4 & 10,861 & 3,258 \\
\hline Taricha torosa - southern range & CDFG-SSC & 4 & 14,915 & 4,475 \\
\hline
\end{tabular}```

